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A B S T R A C T

Porcine epidemic diarrhea (PED) causes significant economic losses to the pig farming industry worldwide and 
currently lacks an effective vaccine. Multiple detection assays and protein purification methods use magnetic 
nanoparticles due to their biocompatibility, high specific surface area, and solution suspension properties. In this 
study, a two-probe competitive ELISA based on magnetic nanoparticles for detecting PEDV N protein was 
developed. MNPs-N and McAb-HRP probes were prepared and the procedure was optimized to identify the ideal 
reaction conditions. Compared to other methods, the developed method shortens the detection time to 50 min. 
The coefficient of variation (CV) for intra- and inter-lot replicates was less than 10 %, with reproducibility. The 
coincidence rate with commercial kits is 93.07 %, making this method reliable and suitable for PED immune 
monitoring and diagnostics.

1. Introduction

Porcine epidemic diarrhea virus (PEDV) causes porcine epidemic 
diarrhea (PED) [1]. It is acute and highly contagious, with clinical 
manifestations like vomiting, diarrhea, and dehydration [2]. PEDV af-
fects pigs of all ages, but piglets have high mortality rates [3,4]. First 
identified in the United Kingdom in 1971, [5] the disease rapidly spread 
across Europe by 1976, causing significant economic losses [6]. Since 
the 1980s, PEDV has also spread in Asia [7]. The vaccine strain CV777 
provided immunity, but as mutated strains emerged in 2010, the virus 
affected even those previously vaccinated. PED ranks among the most 
devastating epidemics in the swine industry [8–10]. Piglet mortality due 
to PEDV infection can reach 20 %–30 %, impacting China's pig industry 
severely [11,12]. Given the global prevalence and substantial economic 
impact, developing effective vaccines against PEDV is a priority [13].

PEDV encodes four structural proteins; namely N, S, M, and E protein 
[14]. Studies indicate that PEDV can co-infect with porcine 

coronaviruses like PDCoV, and TGEV. But even with other proteins, 
detection of viral particles requires PEDV N protein [15]. The N protein, 
or nucleocapsid protein, constitutes a significant portion of the viral 
proteins and exhibits high sequence conservation [16]. This makes it an 
ideal target for diagnostic tools with high sensitivity and specificity, 
facilitating early detection and accurate diagnosis of PED [17].

Magnetic nanoparticles (MNPs), also called magnetic microspheres, 
are a significant research topic in nanomaterial science [18]. They can 
be quickly separated from liquids using magnetic fields and reused [19]. 
Their biocompatibility, large surface area, stability, and solution sus-
pension properties [20] make MNPs ideal in drug delivery mechanisms 
[21,22], pharmaceuticals [23], separation and purification processes 
[24], and wastewater treatment [25,26]. Current research shows po-
tential beyond these fields, extending to MRI contrast agents [27], green 
catalysts [28,29], cell labeling [30], controlled drug release [31], and 
protein separation. MNPs can be categorized into organic and inorganic 
particles [32]. Organic MNPs are composed of magnetic materials 
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combined with natural or synthetic polymers. They are preferred for in 
vivo drug delivery due to their biocompatibility and degradability [33]. 
Inorganic MNPs are made from iron, iron oxides, or other metals with 
inorganic materials. Various types exist, with Fe3O4 magnetic micro-
spheres being the most common. In this study, Fe3O4 magnetic micro-
spheres were used, owing to their advantages of external magnetic field 
responsiveness, and high thermal and chemical stability, facilitating 
broader applications [34].

An MNPs-based two-probe competitive enzyme-linked immunosor-
bent assay (ELISA) was developed to detect anti-PEDV N protein anti-
bodies. Monoclonal antibodies were generated by immunizing mice 
with the N protein. These were conjugated with MNPs to prepare MNPs- 
N probes. The sodium periodate method was used to prepare McAb-HRP 
probes. Further optimization led to the successful development of the 
two-probe competitive ELISA. Results obtainable in 50 min, excellent 
inter- and intra-batch reproducibility, and potential for PED immuno-
surveillance, make this method significant in PED prevention and 
control.

MNPs were converted into MNPs-N probes by coupling their 
carboxyl groups with the amino groups of N protein. The HRP-McAb 
probe was generated by labeling monoclonal antibodies (McAb) with 
horseradish peroxidase (HRP). HRP-McAb competitively binds to MNPs- 
N with the antibodies from the sample. MNPs have dispersing and sus-
pending properties; hence, MNPs-N can be suspended, reducing the 
distance between antibodies, and accelerating the formation of MNPS-N 
antibodies. The antigen-antibody competition reaction is expedited and 

more sensitive compared to traditional methods. This principle is illus-
trated in Fig. 1.

2. Experiment

2.1. Materials and reagents

RPMI-1640 medium and Dulbecco's modified Eagle's medium 
(DMEM) were procured from Shanghai Yuanpei Biotechnology Co., LTD. 
(Shanghai, China). N-hydroxythiosuccinimide sodium salt (NHC) and N- 
(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) 
were procured from Shanghai Aladdin Biochemical Science and Tech-
nology Co. Ltd. (Shanghai, China). EDC activates MNPs carboxyl group, 
and NHC is a catalyst. Immunologic adjuvants were purchased from 
Biodragon (Suzhou, China). The 96-well magnetic labeling plate was 
purchased from Nanjing Dongna Biotechnology Co. (Nanjing, China). 
Morpholine ethanesulfonic acid (MES) was purchased from Merck Mil-
lipore (Billerica, MA, USA). Horseradish Peroxidase (HRP) was pur-
chased from Sigma-Aldrich (St. Louis, MO, USA).

2.2. Serum samples

Positive standard sera for ASFV and pseudorabies virus (PRV) were 
procured from the China Veterinary Culture Collection Center (CVCC, 
Beijing, China). Positive serum samples for porcine reproductive and 
respiratory syndrome virus (PRRSV) and clinical serum samples were 

Fig. 1. Schematic representation of the two-probe competitive ELISA technique.
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pre-collected and preserved.

2.3. Synthesis and characterization of MNPs-N

The methodological framework outlined in the preceding publica-
tion was followed [35]. 2 mg MNPs (10 mg/mL) were withdrawn, 
magnetically separated, washed with MES (0.015 M, pH = 5.5) solution 
twice, and resuspended. 0.2 mg EDC (10 mg/mL) and NHC (10 mg/mL) 
were added, and the solution was stirred for 30 min at room tempera-
ture. The mixture was magnetically separated, and the supernatant was 
discarded. The MNPs were washed with MES solution and resuspended. 
Of N protein, 40 μg was added, and the solution was incubated, stirring, 
for 4 h at room temperature. The solution was magnetically separated 
and washed with PBST buffer (pH = 7.4) twice. The supernatant was 
retained to detect the coupling efficiency of the MNPs and N protein. The 
unbound sites on MNPs were blocked by adding 1 % BSA (PBST as 
solvent) and the solution was stirred for 1 h at room temperature. MNPs- 
N was washed with PBST buffer, resuspended with 0.2 mL of PBST 
buffer, and stored at 4 ◦C.

Transmission electron microscopy and laser particle size analyzer 
were used to characterize MNPs-N synthesis.

2.4. Screening and characterization of anti-N protein monoclonal 
antibodies

30 μL (1 μg/μL) of purified N protein was emulsified with 30 μL of 
QuickAntibody-Mouse 5 W Lactic Acid Water Adjuvant to immunize two 
6-week-old BALB/c female mice intramuscularly. Mice antibody pro-
duction was monitored using ELISA. The mouse having higher antibody 
levels was euthanized, and its spleen was ground and fused with SP2/ 
0 cells. These hybridoma cells were screened by indirect ELISA for 
positive results and subsequently subcloned thrice using limited dilu-
tion. Cells secreting N protein-specific antibodies were expanded and 
cultured to make ascites and were purified using a Protein G affinity 
chromatography column.

Western blotting (WB) was used to assess the reactivity of the 
monoclonal antibody against the N protein. The N protein sample was 
mixed with 6× sample buffer, boiled, and separated using 10 % SDS- 
PAGE. The proteins were then transferred to a PVDF membrane, 
blocked with 5 % skim milk in PBST. A hybridoma supernatant was 
prepared as the primary antibody, and an enzyme-labeled goat anti- 
mouse antibody as the secondary antibody.

Immunofluorescence assay (IFA) was used to assess the reactivity of 
the monoclonal antibody against the N protein. Vero cells cultured in 24- 
well plates were inoculated with PEDV and monitored every 12 h until 
lesions developed. Upon detecting lesions, the culture medium was 
washed with PBS thrice. The cells were fixed in paraformaldehyde for 
30 min and then washed with PBS. 0.1 % Triton X-100 was added and 
kept for 15 min at room temperature to permeabilize the cells. After 
discarding the solution, the cells were rinsed with PBS thrice. The so-
lution was blocked with 5 % BSA for 1 h at room temperature. The 
blocking solution was discarded, and the wells were washed with PBS 
thrice. The hybridoma supernatant was added to each well and incu-
bated for 1 h at room temperature. The wells were washed with PBS and 
then diluted with fluorescein isothiocyanate (FITC)-labeled goat anti- 
mouse IgG (1:500) and incubated for 1 h at room temperature in the 
dark. The wells were washed with PBS, and the samples were stained 
with DAPI for 30 min. The stain was discarded, and the samples were 
rinsed with water and PBS, thrice each. The stained cells were observed 
under a fluorescence microscope.

Monoclonal antibody isoforms were determined using a mouse 
monoclonal antibody isoform kit.

2.5. Synthesis and characterization of McAb-HRP probes

Previously published steps were followed. [36]: 5 mg of HRP was 

dissolved in 1 mL of water to make the final concentration 5 mg/mL, and 
200 μL of 0.1 M NaIO4 was added. This was stirred continuously and 
incubated for 20–30 min, in the dark, at room temperature. The solution 
was poured into a dialysis bag (8000–14,000 D molecular weight cut- 
off), and dialyzed in 1 mM sodium acetate buffer (pH = 4.4) for 12 h 
at 4 ◦C. 200 μL of 0.2 M (pH = 9.6) borate buffer was added to the 
dialysate, and the pH was adjusted to 9.5 by adding 1 M NaOH, and 10 
mg of purified antibody (4 mg/mL in PBS). This mixture was gently 
stirred for 12–16 h at 4 ◦C. 235 μL of freshly prepared 4 mg/mL NaBH4 
solution was added (47 μL NaBH4 per 1 mg HRP), mixed well, and kept 
for 2 h at 4 ◦C. An equal volume of saturated ammonium sulfate solution 
was added to precipitate the purified antibody. The solution was kept for 
30 min at 4 ◦C, then centrifuged at 12000 r/min for 30 min at 4 ◦C. The 
supernatant was discarded, the precipitate was resuspended in PBS, and 
the resuspension was dialyzed for 12–16 h in PBS at 4 ◦C. The dialyzed 
solution was centrifuged at 12000 r/min for 10 min, and the supernatant 
was stored at − 80 ◦C. This was used to label the antibodies.

The absorption peak of the McAb-HRP probe was detected using a 
UV spectrophotometer, and the McAb-HRP probe was characterized by 
direct ELISA.

2.6. Competitive ELISA procedure

5 % BSA solution (200 μL) was added to each well, and the plate was 
incubated for 1 h at 37 ◦C. The plate was patted dry and stored at 4 ◦C. 
50 μL each of MNPs-N and McAb-HRP probes were added to each well. 
Either 50 μL of PEDV-positive serum or the test sample was added, with 
PBS as a blank control. The plate was gently shaken and then allowed to 
stand for 30 min at room temperature. The plate was then transferred 
onto a 96-well magnetic plate, and the solution was magnetically 
separated for 10 s. The supernatant was discarded, and the plate was 
washed four times with PBST buffer. 100 μL of color development so-
lution was added and left at room temperature. 50 μL of reaction 
termination solution was then added. The absorbance was measured at 
450 nm, using PBS as a control. The percent inhibition (PI) was calcu-

lated using the formula: PI =

(

1 −
OD450 nm positive value (P)

negative value (N)

)

× 100%.

2.7. Optimization of competitive ELISA conditions

The optimal concentration of MNPs-N and the dilution of McAb-HRP 
probes were determined using the checkerboard method. MNPs-N probe 
concentrations ranged from 0.2 μg/mL to 8 μg/mL in PBS, while McAb- 
HRP probe dilutions ranged from 1:500 to 1:8000. After establishing 
binding sites, 50 μL of MNPs-N probe was added vertically to the plate, 
while 50 μL of McAb-HRP probe, horizontally. The remaining steps were 
the same as in Section 2.5. The optimal concentrations and dilutions 
were based on observed OD values.

Positive sera were diluted with PBS at various ratios (undiluted, 1:1, 
1:2, 1:5, 1:10, and 1:20). Equal volumes of MNPs-N and McAb-HRP 
probe were mixed in each dilution. The mixtures were incubated for 
30 min at room temperature. The subsequent steps were executed as 
previously described. The best serum dilution was the one yielding the 
highest PI value (1-OD450 nm positive/negative value).

Based on the optimized conditions for MNPs-N probe concentration, 
McAb-HRP probe dilution, and serum dilution, the optimal reaction time 
was determined. ELISA assays were conducted at room temperature 
with reaction times ranging from 5 to 35 min. To determine the optimal 
color development time, TMB solution was added, and the reactions 
were incubated in the dark for up to 25 min, before adding the termi-
nation solution. Absorbance was measured at 450 nm using a multi-
functional enzyme marker.

2.8. Criteria for determining positivity and negativity

To establish critical values, 30 PEDV-negative sera were tested using 
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competitive ELISA, using the optimized conditions. The PI values were 
computed, and the average inhibition rate (X) and standard deviation 
(SD) of the samples were calculated. A sample's PI value was deemed 
negative if PI ≤ X + 2SD, and positive if PI ≥ X + 3SD.

2.9. Repeatability and specificity assessment

Seven sera samples were selected for the assay to calculate inter- and 
intra-batch coefficients of variation (CV = standard deviation (SD)/ 
mean × 100 %). This assessed the reproducibility of the competitive 
ELISA.

PRRSV-positive, PRV-positive, PDCoV- positive and ASFV-positive 
sera were tested under optimized competitive ELISA conditions to 
assess method specificity. A PEDV-positive serum served as a control.

2.10. Comparison with commercial kits

101 serum samples were tested using the established competitive 
ELISA methods and commercial kits. The concordance rate between the 
two methods was calculated, and the compliance rate was expressed as: 
Compliance rate (%) = (number of negative sera detected similarly +
number of positive sera detected similarly)/total serum number × 100 
%.

3. Results

3.1. Identification of MNPs-N

The carboxyl groups on the MNPs reacted with the EDC and NHC 
solutions forming an activated ester solution. This solution reacts with 
the amino groups on the PEDV N protein forming the MNPs-N probe. 
TEM results(Fig. 2ab) revealed tiny protrusions on the surface of MNPs- 
N, indicating successful N protein attachment. Particle size analysis 
(Fig. 2c) revealed the average particle size of the original MNPs to be 
about 500 nm, and MNPS-N about 800 nm. MNPs-N had a significantly 
larger particle size compared to MNPs, indicating the successful prepa-
ration of the MNPs-N probe.

3.2. Identification of anti-N McAb and McAb-HRP probe

Tail tip blood serum was withdrawn from mice after two immuni-
zations. The serum potency of the immunized mice was measured using 
indirect ELISA, with the serum diluted from 1:1000 to 1:2,048,000. The 
results indicated that the serum potency of the immunized mice reached 
a dilution of 1:2,048,000 (Fig. 3a). Positive mouse 2 was chosen for cell 
fusion to prepare monoclonal antibodies.

The McAb reactivity with N protein was assessed by Western blot 
(Fig. 3b) and IFA. The IFA results demonstrated that monoclonal anti-
bodies produced specific fluorescence signals with the virus-attached 

Fig. 2. Characterization of MNPs and MNPs-N. (a) Representative TEM images of MNPs. (b) Representative TEM image of MNPs-N probe. (c) Particle size distri-
bution of MNPs and MNPs-N.
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Vero cells, while the negative control did not exhibit fluorescence sig-
nals (Fig. 3c). The hybridoma cell supernatant (the primary antibody) 
was identified using the Triple Eagle Mouse Monoclonal Antibody 
Subtype Identification Kit. The monoclonal antibody subtype was 
identified as IgG1 with a Kappa chain (Fig. 3d). Ascites were prepared 
from hybridoma cells and purified (Fig. 3e). High-purity monoclonal 
antibodies against the N protein were obtained.

The synthesized McAb-HRP conjugate was identified using a UV 

spectrophotometer and direct ELISA. The absorption peak of McAb-HRP 
integrates the absorption peaks of McAb and HRP (Fig. 4a). Addition-
ally, the activity of the McAb-HRP probe was assessed using ELISA. 
McAb within the synthesized probe maintains a high affinity for the N 
protein (Fig. 4b), indicating that the affinity of McAb for N protein or the 
catalytic ability of HRP remains unaffected.

Fig. 3. Preparation and characterization of McAb. (a) Indirect ELISA for the detection of specific IgG titer in BALB/c mice. (b) Western blot results of the reaction 
with N protein McAb. Lane 1 was N protein, lane 2 was S protein negative control. (c) IFA identification. (d) Schematic diagram of McAb subtype identification. (e) 
SDS-Page electrophoresis results of the purified McAb. Lanes 1–7 are purified antibodies.

Fig. 4. Validation of the McAb-HRP probe. (a) UV–Vis scanning spectra of McAb-HRP. (b) ELISA detection of the McAb-HRP probe.
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3.3. Competitive ELISA method condition optimization

The optimal concentrations of MNPs-N and McAb-HRP probes were 
determined using the checkerboard method. The MNPs-N probe was 
diluted in PBS solution to obtain five concentration gradients (0.2 μg/ 
mL, 1 μg/mL, 2 μg/mL, 4 μg/mL, and 8 μg/mL). The McAb-HRP probe 
was serially diluted (1:500, 1:1000, 1: 2000, 1:4000, 1:6000, and 
1:8000). The highest PI value was observed when the MNPs-N probe at 
1 μg/mL and the McAb-HRP probe at 1:2000 dilution (Table 1).

A PEDV positive serum was serially diluted (undiluted, 1:1, 1:2, 1:5, 
1:10, and 1:20) and tested. OD450 values reading revealed that undiluted 
serum had the highest PI value. Thus, no dilution was required for 
optimal performance (Fig. 5a). The optimal reaction time was found to 
be 30 min (Fig. 5b), and optimal color development duration was 
determined (Fig. 5c).

The final optimized assay conditions were a combination of 50 μL of 
undiluted serum, 50 μL of MNPs-N (1 μg/mL), and 50 μL of McAb-HRP 

Table 1 
Determination of the optimal concentration of MNPs-N probe and the optimal 
dilution of McAb-HRP probe (PI).

MNPs-N 
concentration 
(μg/mL)

McAb-HRP dilution

1:500 1:1000 1:2000 1:4000 1:6000 1:8000

0.2 70.60 
%

70.54 
%

70.47 
%

38.31 
%

37.15 
%

50.00 
%

1
73.63 
%

76.72 
%

79.71 
%

68.40 
%

63.60 
%

65.94 
%

2
69.59 
%

72.38 
%

71.27 
%

67.30 
%

65.13 
%

55.48 
%

4
63.18 
%

70.18 
%

74.54 
%

69.90 
%

57.04 
%

38.85 
%

8 38.99 
%

52.61 
%

56.67 
%

51.53 
%

46.76 
%

24.83 
%

Fig. 5. Optimization results of the two-probe competitive ELISA method. (a) Determination of the optimal sample dilution ratio. (b) Determination of the optimal 
sample reaction time. (c) Determination of the optimal color development time.
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diluted at a ratio of 1:2000. The reaction proceeded at room temperature 
for 30 min, followed by 20-min color development with TMB solution.

3.4. Determination of critical values

Optimized competitive ELISA was used to evaluate 30 PEDV- 
negative sera. The mean (X) sample inhibition rate was 21.83 %, and 
the standard deviation (SD) was 7.34 %. The result was considered 
negative if it was less than X + 2 SD = 36.51 %, positive if it was greater 
than X + 3 SD = 43.85 %, and doubtful if it was between 36.51 % and 
43.85 % (Fig. 6).

3.5. Specificity and reproducibility tests

PRRSV-positive sera, PRV-positive sera, ASFV-positive sera, PDCoV- 
positive sera and PEDV-positive serum controls were used to assess the 
specificity of ELISA (Fig. 7). Good specificity was observed only for 
PEDV-positive seropositivity.

Optimized competitive ELISA was used to assess seven PEDV- 
positive sera. The intra- and inter-batch coefficients of variation were 
under 10 % (Table 2), indicating that the method was reproducible and 
stable.

3.6. Comparison with commercialized kits

ELISA was used to assess 101 serum samples stored in the laboratory, 
and the compliance rate with commercial kits was calculated. ELISA 
detected 79 positive sera and 22 negative sera, while the commercial-
ized kit identified 86 positive sera and 15 negative sera. Thus, the 
compliance rate was 93.07 % (Table 3).

4. Discussion

During the early stages of the PED epidemic, the classical CV777 
strain vaccine was effective. As mutants emerged after 2010, those 
previously vaccinated were also affected. This caused a critical concern 
within the pig industry. These variants increased piglet mortality rates 
to 80–100 % [8]. Currently, there are no medicines or vaccines available 
to control these outbreaks [37]. Current strategies focus on preventing 
virus introduction through infected animals and assessing vaccination 
efficacy in pregnant sows. Several diagnostic techniques are employed 
for detecting PED, including immunofluorescent antibody technology 
(IFA), immunohistochemistry, fluorescent quantitative PCR, and ELISA 
[38]. ELISA stood out for its analysis capacity. It could handle large 

Fig. 6. Determination of the cut-off value.

Fig. 7. Results of the specificity test.

Table 2 
Results of the repeatability test.

Sample no. Inter-assay Intra-assay

X SD CV% X SD CV%

1 0.775758336 0.044226158 5.70 % 0.789205658 0.015811386 2.00 %
2 0.765830519 0.01922436 2.51 % 0.782005575 0.023897687 3.06 %
3 0.510580611 0.050990773 9.99 % 0.521748486 0.048385868 9.27 %
4 0.815300401 0.02932812 3.60 % 0.790702079 0.030065915 3.80 %
5 0.687837363 0.033734311 4.90 % 0.706612876 0.052708275 7.46 %
6 0.70776853 0.013555886 1.91 % 0.71069568 0.024768722 3.48 %
7 0.677427353 0.038854693 5.73 % 0.646453104 0.056974719 8.81 %

Table 3 
Clinical sample detection.

Clinical 
samples

Two-probe competitive 
ELISA method

Commercial Kits Compliance 
rate (%)

No. of 
negative

No. of 
positive

No. of 
negative

No. of 
positive

101 22 79 15 86 93.07 %
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sample volumes efficiently and could measure antibody titers in serum 
and colostrum, thereby assessing vaccination responses [39]. An indi-
rect ELISA for the detection of PEDV serum developed by Yang et al. 
[40], an indirect ELISA targeting IgA antibodies by Wang et al. [41], and 
a novel double-antibody sandwich quantitative ELISA by Han et al. [42] 
are some recent advancements. All these methods have high sensitivity, 
specificity, and simplicity. Maternal antibodies could confer neonatal 
protection against PEDV, and monitoring sow antibody levels is 
imperative [43]. Although easy to use, traditional ELISA could be 
complex and require time.

MNPs offer a promising alternative, functioning as solid supports 
that facilitate rapid antigen-antibody binding via a magnetic field [44]. 
MNPs versatility extends to hormones [45], neurotransmitters [46], 
cytokines [47], and tumor-associated antigens [48] too. This feature 
enables more research to resolve the complicated and time-consuming 
operation of traditional ELISA. In this study, MNPs are used to 
enhance PED diagnostics.

The ELISA involved a 30-minute incubation with MNPs-N and McAb- 
HRP probes, followed by colorimetric analysis after washing. The wells 
were washed four times with PBST, and the color-developing solution 
was added. This was incubated for 20 min in the dark. OD450 value was 
read after adding the stop solution to determine if the samples were 
positive. The critical value was determined by evaluating 30 negative 
sera. The specificity and reproducibility were assessed and compared 
with commercial assay kits. The final results showed a 93.07 % 
compliance of the competitive ELISA with the kit. Due to its specific 
detection method, only positive sera PRRSV, PRV, PDCoV and ASFV 
were detected. Other porcine diarrhea diseases could not be detected, 
indicating the need for improvements in future tests. The intra- and 
inter-batch coefficients of variation were less than 10 %, indicating good 
reproducibility. The assay was completed in 50 min, faster than other 
traditional ELISA methods. This optimized competitive ELISA supports 
the epidemiological investigation, clinical diagnosis, and PED epidemic 
control.
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